Received 6 March 2006

Accepted 7 March 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yan-Ling Wang, Dong Xu,* Wen-Tao Yu, Xin-Qiang Wang and Guang-Hui Zhang

State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100, People's Republic of China

Correspondence e-mail: wangyl@icm.sdu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.052 wR factor = 0.155 Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexadecyltrimethylammonium bis(2-thioxo-1,3-dithiole-4,5-dithiolato- $\kappa^2 S^4$, S^5)nickelate(III)

In the title complex, $(C_{19}H_{42}N)[Ni(C_3S_5)_2]$, the Ni atom is coordinated by four 2-thioxo-1,3-dithiole-4,5-dithiolate (dmit) S atoms. The $[Ni(dmit)_2]^-$ monoanion has a planar geometry, with the central Ni atom and the four coordinated S atoms forming an NiS₄ square plane. There are S···S intermolecular contacts in the crystal structure.

Comment

Since 1979 (Steimeck & Kirmse, 1979), metal bis(2-thioxo-1,3dithiole-4,5-dithiolate), or bis(dmit), complexes have attracted increasing attention owing to their potential application as precursors for electrical conductors and superconductors (Cassoux, 1999; Robertson & Cronin, 2002), or as optical and photo-electrical materials (Winter *et al.*, 1992; Zuo *et al.*, 1996; Bai *et al.*, 1999; Wang *et al.*, 1999; Zhai *et al.*, 1999; Dai *et al.*, 2000; Liu *et al.*, 2002). It is well known that intermolecular interactions play an important role in the conductivities and superconductivities of $[Ni(dmit)_2]^n$ salts. The title salt, (I), was synthesized to study the impact of cation size on the intermolecular interactions in $[Ni(dmit)_2]^n$ salts.

The molecular structure of (I) (Fig. 1 and Table 1) exhibits no distinguishing features compared to the other known structures of $[Ni(dmit)_2]^-$ in terms of ligand behaviour and the coordination characteristics of the Ni ion. The $[Ni(dmit)_2]^$ anion is planar, with a maximum deviation from the leastsquares plane of 0.096 (1) Å for atom S6. The NiS₄ core adopts a slightly distorted square-planar configuration.

Figure 1

The asymmetric unit of (I), showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

© 2006 International Union of Crystallography All rights reserved

Figure 2

The packing of (I), viewed approximately along the *a* axis. H atoms have been omitted for clarity.

The packing of the $[Ni(dmit)_2]^-$ anions of (I), showing the S···S contacts as dashed lines.

The crystal packing is shown in Fig. 2. Fig. 3 highlights the shortest $S \cdots S$ contacts which propagate the packing arrangement of the anions. By virtue of these S...S interactions, the $[Ni(dmit)_2]^-$ anions form centrosymmetric dimers. These dimers are, in turn, linked to other dimers by translation along the *b*-axis direction, forming chains. The shortest $S \cdots S$ distance in the dimers is 3.693 (3) Å for $S4 \cdots S5^{i}$ [symmetry code: (i) 1 - x, 1 - y, -z and between dimers is 3.637 (3) Å for $S2 \cdot \cdot \cdot S9^{ii}$ [symmetry code: (ii) x, 1 + y, z]. The shortest $S \cdots S$ distance in (I) is equal to the sum of the van der Waals radii and is much larger than that in an analogue with a smaller planar cation, namely N-methylpyridinium (Xue et al., 2003); *i.e.* a large cation appears to weaken the intermolecular interaction.

Experimental

Dmit(COPh)₂ (0.816 g, 2 mmol) was treated with an excess of sodium methoxide (0.5 M) in MeOH (20 ml) under nitrogen at room temperature with stirring. To the resulting red solution, solutions of NiCl₂·6H₂O (0.237 g, 1 mmol) in MeOH (20 ml) and then cetyltrimethylammonium bromide (CTAB) (0.870 g, 2.4 mmol) in MeOH (20 ml) were added. The resulting precipitate was washed with *i*-PrOH. Salt (I) was obtained by oxidizing this precipitate in acetone using I₂ according to a literature procedure (Xue et al., 2003). The high optical-quality single crystals used for X-ray structure analysis were obtained by slow evaporation of an acetone solution of (I) at room temperature.

Crystal data

-	
$(C_{19}H_{42}N)[Ni(C_3S_5)_2]$	Z = 2
$M_r = 735.91$	$D_x = 1.401 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 8.051 (5) Å	Cell parameters from 2878
b = 12.240(5) Å	reflections
c = 18.316 (5) Å	$\theta = 2.6-26.1^{\circ}$
$\alpha = 93.426 \ (5)^{\circ}$	$\mu = 1.17 \text{ mm}^{-1}$
$\beta = 99.218 \ (5)^{\circ}$	T = 293 (2) K
$\gamma = 100.494 \ (5)^{\circ}$	Plate, red
$V = 1744.5 (14) \text{ Å}^3$	$0.56 \times 0.27 \times 0.10 \text{ mm}$

6012 independent reflections 4270 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.030$

 $\theta_{\rm max} = 25.0^{\circ}$

 $h = -9 \rightarrow 9$

 $k = -14 \rightarrow 12$

 $l = -21 \rightarrow 18$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\min} = 0.560, T_{\max} = 0.892$ 8662 measured reflections

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.052$	$w = 1/[\sigma^2 (F_o^2) + (0.0848P)^2]$
$wR(F^2) = 0.155$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.001$
6012 reflections	$\Delta \rho_{\rm max} = 0.63 \text{ e } \text{\AA}^{-3}$
334 parameters	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C1-S1	1.642 (4)	C4-S8	1.746 (3)
C1-S2	1.719 (4)	C5-S7	1.709 (4)
C1-S3	1.719 (4)	C5-S9	1.726 (3)
C2-C3	1.362 (5)	C6-S10	1.645 (4)
C2-S4	1.706 (4)	C6-S8	1.708 (4)
C2-S2	1.733 (3)	C6-S9	1.726 (4)
C3-S5	1.710 (3)	Ni1-S6	2.1479 (11)
C3-S3	1.742 (3)	Ni1-S7	2.1540 (12)
C4-C5	1.347 (5)	Ni1-S5	2.1545 (11)
C4-S6	1.720 (4)	Ni1-S4	2.1592 (12)
\$6-Ni1-\$7	92.90 (4)	\$6-Ni1-\$4	87.08 (4)
S6-Ni1-S5	176.61 (5)	S7-Ni1-S4	175.07 (5)
\$7-Ni1-\$5	87.25 (4)	\$5-Ni1-\$4	93.06 (4)

All H atoms were positioned geometrically and allowed to ride on their attached atoms, with C-H = 0.96–0.97 Å and $U_{iso}(H) = 1.2$ – $1.5U_{eq}(C).$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Bruker, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by grants from the High Technology Development Project of China (No. 2002 A A313070) and the Natural Science Foundation of China (Nos. 60476020, 60377016 and 50272037).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.

- Bai, J. F., Zuo, J. L., Tan, W. L., Ji, W., Shen, Z., Fun, H.-K., Chinnakali, K., Razak, I. A., You, X. Z. & Che, C. M. (1999). J. Mater. Chem. 9, 2419–2423.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1998). SMART (Version 5.624), SAINT (Version 6.02a) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.
- Dai, J., Bian, G. Q., Wang, X., Xu, Q. F., Zhou, M. Y., Munakata, M., Maekawa, M., Tong, M. H., Sun, Z. R. & Zeng, H. P. (2000). J. Am. Chem. Soc. 122, 11007–11008.
- Liu, C. M., Zhang, D. Q., Song, Y. L., Zhang, C. L., Li, Y. L. & Zhu, D. B. (2002). *Eur. J. Inorg. Chem.* pp. 1591–1594.

- Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.
- Steimeck, G. & Kirmse, R. (1979). Phosphorus Sulfur, 7, 49-55.
- Wang, S. F., Huang, W. T., Zhang, T. Q., Yang, H., Gong, Q. H., Okuma, Y., Horikiri, M. & Miura, Y. F. (1999). Appl. Phys. Lett. 75, 1845–1847.
- Winter, C. S., Oliver, S. N., Manning, R. J., Rush, J. D., Hill, C. A. S. & Underhill, A. E. (1992). J. Mater. Chem. 2, 443–447.
- Xue, G, Xu, W, Yu, W. T. & Fang, Q. (2003). Acta Cryst. C59, m27– m29.
- Zhai, J., Huang, C. H., Wei, T. X., Gan, L. B. & Cao, H. (1999). Polyhedron, 18, 1513–1518.
- Zuo, J. L., Yao, T. M., You, F., You, X. Z., Fun, H. K. & Yip, B. C. (1996). J. Mater. Chem. 6, 1633–1637.